ConcurrentHashMap
大约 8 分钟
ConcurrentHashMap
1. 构造器
ConcurrentHashMap的构造器和HashMap的构造器基本相同
2. put方法
ConcurrentHashMap键或者值为空会抛出空指针异常,put方法开始先求取hash
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
...
}
static final int spread(int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
提示
& HASH_BITS(二进制是31个1)就是为了让最终得到的哈希值始终是一个正数。
2.2 第一次添加键值对
第一次调用put方法会初始化数组
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
...
...
}
}
initTable方法
提示
sizeCtl:
- -1:代表map数组正在初始化
- 小于-1:代表正在扩容
- 0:表示还没有初始化
- 正数:若没有初始化,代表要初始化的长度;若已经初始化了,代表扩容的阈值 即临界值
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
当多线程同时进行初始化的时候, U.compareAndSwapInt(this, SIZECTL, sc, -1)
线程会将sizeCtl比较并交换为-1,其他线程让出cpu片段直至初始化完成;
第一次添加键值对,遇到for(死循环)直接通过 casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null))
比较并赋值
2.3 第二次添加键值对
- 在第二次添加数据时,和第一次基本一样,不会出现扩容的情景,但是有可能出现链表
- 和第一次类似如果计算索引位子没有数据存在,则直接通过CAS赋值
- 如果添加数据的索引位置存在数据,则转换为链表
final V putVal(K key, V value, boolean onlyIfAbsent) {
// 如果键或者值为null,直接报空指针错误
if (key == null || value == null) throw new NullPointerException();
// 计算键的hash值`(h ^ (h >>> 16)) & HASH_BITS;`
int hash = spread(key.hashCode());
// 判断节点位置是什么类型
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
// 如果数组为空直接进行初始化数组容量
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 如果几点位置原先不存在数据,通过CAS赋值
if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
// 数组扩容时,协助
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 通过synchronized关键字进行多线程加锁,锁住整个槽位
synchronized (f) {
// 双端检索,结合for(死循环重新检测数据,数据变化则重新走流程)
if (tabAt(tab, i) == f) {
// 如果是链表(为什么?)
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
// 尾插
pred.next = new Node<K,V>(hash, key,value, null);
break;
}
}
}
// 如果是树结构
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
// 如果是链表个树大于8,进行扩容或者转换为树结构
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
2.3 多次添加键值对
多次添加数据以后会遇到数组扩容或者树的转换,这就需要,查看 treeifyBin(tab, i);
方法了
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
// 如果数组的长度小于64,直接进行扩容操做,不会新型红黑树的转换
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {
// 双端检查
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
private final void tryPresize(int size) {
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
tableSizeFor(size + (size >>> 1) + 1);
int sc;
while ((sc = sizeCtl) >= 0) {
Node<K,V>[] tab = table; int n;
// 初始化数组
if (tab == null || (n = tab.length) == 0) {
n = (sc > c) ? sc : c;
if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if (table == tab) {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = nt;
// sc 表示扩容的时机
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
}
}
else if (c <= sc || n >= MAXIMUM_CAPACITY)
break;
else if (tab == table) {
int rs = resizeStamp(n);
if (sc < 0) {
Node<K,V>[] nt;
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
// 扩容操作
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
}
}
}
提示
sc = n - (n >>> 2);
扩容的临界值
扩容:
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
//【第一步】
//决定当前线程在需要处理的槽位充足下,分配到的槽位数
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
//新容器为空则创建容器
if (nextTab == null) { // initiating
try {
//多出一个赋值操作,尝试处理内存溢出
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
//转移索引数设置为当前容器容量
transferIndex = n;
}
//将下个容器的转移搜索引数设置为新容器容量
int nextn = nextTab.length;
//创建ForwardingNode容器并放入新容器
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
//【第二步,划分槽位,帮助推进】
//选择当前线程进行transfer的槽位,从最后一个槽位向前
while (advance) {
int nextIndex, nextBound;
//向前推进一个槽位,或者已经完成了
if (--i >= bound || finishing)
advance = false;
//槽位被其它线程选择完了
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
//尝试获取槽位的操作权
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
//槽位下限
bound = nextBound;
//当前选中进行处理的槽位
i = nextIndex - 1;
advance = false;
}
}
//被选择完毕,选中槽位大于当前容器容量,选中槽位+当前容器容量大于新容器容量
//【第三步,设置结束条件,变更地址】
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
//扩容完毕
if (finishing) {
//清除扩容时创建的临时表
nextTable = null;
//将当前表指向临时表
table = nextTab;
//设置下次扩容的临界点为 0.75*扩容容量
sizeCtl = (n << 1) - (n >>> 1);
return;
}
//将扩容标识中的线程标识减一
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
//存在其它线程进行扩容处理,则当前线程处理完自己的槽位后直接退出
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
//不存在其它线程处理,说明自己是唯一处理线程
finishing = advance = true;
//将i重置,在看下还有没有transferIndex
//如果已经是唯一处理线程并且满足前置条件,为何需要检查下?
i = n; // recheck before commit
}
}
//【第四步,处理槽位】
//如果当前槽中没有成员,用forwarding节点占位
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
//如果当前槽中成员为forwarding节点,代表已经被处理过了
else if ((fh = f.hash) == MOVED)
//处理下一个槽
advance = true; // already processed
else {
//锁住槽位
synchronized (f) {
//double check
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
//计算当前成员最高位
//runBit是0 or 1
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
//查找最后重复的链,获得开始位置p,和重复的高位值runBit
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
//如果从p开始后面高位全是0,那么就不需要移动到新槽中
if (runBit == 0) {
ln = lastRun;
hn = null;
}
//如果从p开始后面全是1,那么就需要移动到新槽中
else {
hn = lastRun;
ln = null;
}
//从链的头部一直遍历到p的位置(因为p以后高位都一样)
//为何需要提前找一部分重复?效率更高?这么处理是否有理论依据?
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
//高位为0放到旧槽位中
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
//高位为1放到新槽位中
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
//将ln放到新容器的旧槽位中
setTabAt(nextTab, i, ln);
//将hn放到新容器的新槽位中
setTabAt(nextTab, i + n, hn);
//将老容器中的该节点设置为forwarding节点
setTabAt(tab, i, fwd);
//处理下一个槽位
advance = true;
}
//TreeBin的hash固定为-2,红黑树的调整
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
//槽位里成员少于等于6,退化为链表
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}